Adaptive TTL-Based Caching for Content Delivery

Soumya Basu?!, Aditya Sundarrajan?, Javad Ghaderi3, Sanjay Shakkottai!, and Ramesh Sitaraman?*

UT Austin!, UMass Amherst?, Columbia University3, and Akamai Technologies?

Content Delivery Networks (CDN)

* CDNs deliver millions of requests from content provider to users.

* CDNs bring content closer to end users by caching content locally.

* CDNs handle heterogeneous and ephemeral contents, e.g. webpage, video.

Fig 1: Content Delivery Networks

CDN Objectives and Cache Design

* Primary Objective: Guarantying Quality of Service (QoS) to the end users.

0 Local Availability o

* Ambitious Objective: Enabling Pricing Schemes for content providers.

Cache Hit rate* +

Local Availability +
' Cache Size*

Dedicated Memory

Resources

Challenges in Cache Design

Content Request Process

1. Millions of Objects spanning thousands of types
2. Correlated Arrivals with complex Inter-arrival distribution
3. Complex and non-independent content popularity

4. Non-stationary arrivals — (i) One-hot wonders, (1) Flash Crowds

« Cache Design: Trace-based methods and Theoretical methods

Trace-based Model
Exhaustive search for parameters

Theoretical methods

Hit rate, size rate,

Design _ f()
Request Process param./ Eygluation on traces via simulation

Parameter

1) Very few results with non-stationarity 1) Expensive in large scale, such as CDN

2) Knowledge of Model for closed form 2) Erroneous for non-stationary traces

3) Request parameters high-dimensional 3) Inaccurate for traces with diverse types

. _ 4) Long traces necessary for accuracy
4) Learning is complex and expensive

4)
Overcoming Challenges: Adaptive Caching

» Model-oblivious and Target-driven, Online Adaptation of the parameters

* Time-to-live (TTL) caches for adaptation with hit-rate guarantees
* Circumventing non-convexity: Achieving size-rate , not optimizing
* Higher degrees of freedom for size-rate control: Two level TTL caches.

» Adaptive Filtering of Non-stationary content to limit wastage of size

Dynamic TTL Cache (d-TTL)

Single Level TTL Cache
* One ‘TTL, 6, for each type t

Single Level TTL Adaptation
* Hit-rate target for each type t, h; < 1

» Adaptive TTL, 8, (1) on I*" request
* On [*" request: Type t object, « € (0.5,1)

* On Miss, cache with TTL, 6;
* On Hit, reset the TTL to 6,

: 1
* On timer Expiry, evict object o IfMiss, 8,(1) =0,(1—1) + l_aht

o IfHit, 8,(1) = 0,(1— 1) + - (h,—1)

Caching Terminology

Meta-data: Id of an Object.

Server T Server
Cache l o Type: E.g. data, audio, video Virtual l 7
Miss o | Hit(i): Object in cache (i), i=1,2 | ™ Y

QD - -]
1-0,1| % Miss: Object not in (any) cache. | 5
5 | Virtual Hit: Object not in both
Cache @ : -
it lJ‘g cache, but object-id in cache (2).
= : __#Cache hit
Users Hlt rate:= # Requests
Size rate:= Avg.cache size (Gb)

Fig 2: d-TTL Cache Fig 3: f-TTL Cache

Arrival rate (Gbps)

Filtering TTL Cache (f-TTL)

Two Level TTL Cache Two Level TTL Adaptation
* Two level of caches: Cache (1) and (2) - Hit-rate target for each type ¢, h; < 1

(

* ‘“TTL pair, (64, 8;) for each type t * Size-rate target for each type t, s;
* ‘“TTL pair satisfies 0,> 67 for all t » Adaptive TTL,(8,(1), 8: (1)) on It" request.
* On Miss, * On ['" request: Type t object, a € (0.5,1)

i) Cache objectin (2) with timer 6; o If Miss or Virtual hit,

{

i) Cache meta-data in (2) with timer 6, 1
* On Hit in cache (1), reset the timer to 0, 0.(D)=06,1—-1)+ l_aht
* On Hit in cache (2),

i) Cache objectin (1) with timer 6,

ii) Evict objet and meta-data from (2) ©
e On Virtual hit,

i) Cache objectin (1) with timer 6,

i) Evict meta-data from (2)

05(1) = 631~ 1) + (s, — B~ 1))

If Hit, denote the timer valueasy > 0

0.(1) = 0,1~ 1) + 7 (=)

1
() =65(1—-1) + T(St +1—0i(1-1))

* On timer Expiry, evict object/meta-data
Piry, evict oblect/ o 83(1) = min (8,(1), 67 (D}

\ J

Performance on Akamai Traces

« Akamal trace: Duration, 9 days, #Requests, 504m, #Objects, 25m.

» Targeted hit rate for d-TTL and f-TTL: 40%, 50%, 60%, 70% and 80%.
 Targeted size rate for f-TTL: 50% of size rate of d-TTL.

« ACCURACY: Error in Achieved hit rate: 1.3%, Achieved size rate: 2%o.

80 80

'''''''''
-
-

3
7
!
)
1
h
?
g
g
!
|
>
1
‘f
S

—2-hour average —2-hour average

]
(=}
)
(=]

Object hit rate, %
iy
o

Object hit rate, %
s

----Cumulative average ----Cumulative average

o " 0
12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00
Time Time

Fig 4: d-TTL Convergence Plot Fig 5: f-TTL Convergence Plot

:

—d-TTL
—---£-TTL

3

[y
=

[y

o
ol
o
-
-
-"
'd
-
-
-
-
-J
o
'!
-
-
'd
-
o

Average cache size, 1e9 Bytes

o
iy

0.01
0 20 40 60 80 100

Average object hit rate, %

Fig 6: Hit rate vs Average Cache Size curve

Adaptation Insights

* The larger the value of 6, the higher the hit-rate.

* On cache hit decrease 0, value and on cache miss increase.

* The second ‘TTL’, %, enables filtering of rare objects.

 Lower 67 + hit-rate target =>Smaller cache (2) but larger cache (1).

* Thumb Rule: Filtering reduces total size under high non-stationarity.

Performance Guarantee

System Model

 Finite no. of types and finite no. of ‘recurrent’ objects of each type

« Aurrival of ‘rare’ objects at a non zero rate, e.g. flash-crowd, one-hot objects
« Content request modeled as Markovian Arrival Process

* Inter arrival time with any absolutely contd. pdf with connected support

Performance

« d-TTL* and f-TTL* attains the target hit-rate asymptotically almost surely
« f-TTL* attains size-rate < the target or collapses to 8; = 0 a.a.s.

Proof Techniques

 Stochastic approximation technique used for TTL adaptation
* Projected ODE based proof technique to show convergence of d-TTL

« Two timescale Actor-Critic framework for convergence of f-TTL

_

